

# AT&T Billions of Events Processing migration

Praveen Vemulapalli, Director – Technology, AT&T

Akshay Sharma, Sr. Solutions Consultant, Databricks

June 11, 2024

© 2024 AT&T Intellectual Property. AT&T and globe logo are registered trademarks and service marks of AT&T Intellectual Property and/or AT&T affiliated companies. All other marks are the property of their respective owners

AT&T Proprietary (Internal Use Only) - Not for use or disclosure outside the AT&T companies except under written agreement

### Praveen Vemulapalli

Things I love to do....

- Love Hiking & Camping
- Love motorcycle riding
- Spend loads of time with my family
- Data & AI Technology evangelism
- Drive change & evolution



# AT&T Background

AT&T started with Bell Patent Association, a legal entity established in 1874 to protect the patent rights of Alexander Graham Bell after he invented the telephone system. Originally a verbal agreement, it was formalized in writing in 1875 as Bell Telephone Company.





By 2024, We're turning to public cloud providers to host our *non-network* workloads. Think traditional IT applications like billing and customer care, and corporate applications like HR and finance (stated in 2019) (source: <a href="https://about.att.com/innovationblog/2019/08/cloud\_strategy.html">https://about.att.com/innovationblog/2019/08/cloud\_strategy.html</a>)

In June 2021, Microsoft and AT&T reached a major milestone when we announced an industry-first collaboration to evolve Microsoft's hybrid cloud technology to support AT&T's 5G core network workloads. (source : https://azure.microsoft.com/en-us/blog/improving-the-cloudfor-telcos-updates-of-microsoft-s-acquisition-of-att-s-network-cloud/)



### AT&T's Motivation for Modernizing Hadoop to Databricks



#### Change Drivers

Reduce TCO spend

- Data Centers are Capital Intensive
- Software Cost
- Utility/admin Costs of On-prem Infra
- Nimbleness, Scalability and Innovation
  - Models & Data Science Sequenced to Fit Capacity
  - Jobs Failed Due to Capacity Constraints
  - Adding Data & Analytic Use Cases Required Infrastructure and Increased Sustaining Costs



#### Future-State Goals

Single Version of Truth

Parallelize, Simplify & Automate

Move Resources up the Value Chain

- Free Capital for Growth-Oriented
  - $\supset$  Enable streaming pipelines & analytics
- Empower citizen data scientists & analytics +60 BUs



#### Success To-Date

- Rationalized +30% of the Data
- Migrated 100% of the User Base
- Accelerate Nimbleness Up to 3x for Key Data Science Activities
- Launched Self-Serve ML Analytics Platform
- Co-located Batch & Streaming Data Products and Analytics
- Streamline Model Recreation/Lineage from Hours to Minutes
- Retired +40% of Servers to Date (100% Q1'23)
- Re-invested Unlocked Resources Improving Effective Cloud Run Rate Value



5-year Migration ROI of +300%

Source: https://www.databricks.com/customers/att/migration



# Large scale event time correlation process

# 17B+

Events generated by network daily across our apps that do analytics

# 6400 CPU's

Core Hadoop system was used to manage the daily processing

# 22-30hrs

Daily batch run times on Proprietary analytics platform for processing



### Large scale event time correlation process

# 30%

Cost reduction compared to Hadoop environment – Substantial savings at scale

© 2024 AT&T Intellectual Property - AT&T Proprietary (Internal Use Only)

# 1000 CPU's

Used dynamically for analytics processing 8Hrs

~60% reduction in data processing time. from 30hrs to 8hrs

Analytics processing moved to Spark & Scala



### Akshay Sharma

Things I love to do....

- Listening Music
- Learning new technologies
- Playing PC games
- LeetCode challenges.



# High level Solution Architecture





#### 1. Code Migration (Loops, Disk IO) MR -> RDDs -> Dataframes

#### 2. Tuning Storage account API Rate limits

#### 3. Data Quality issues (DeDuplication, Nulls, DateTime formats)



### **Task Orchestration**



- A = 30 mins B = 20 mins
- C = 60 mins D = 15 mins
- E = 5 mins

Here A, B, C, D, E are individual tasks or let's say *Notebooks* which are going to get executed one after the other.

#### 30+20+60+15+5 = **130** mins (2 hrs 10 mins)



### **Task Orchestration**



Here we have enabled parallelism By having A FAN-OUT to B and C

#### Total Time : A + max(B,C) + D + E

New Time : 30 + 60 + 15 + 5 = 110 mins (1 hr 50 mins) (Less by 20 mins)

Cluster 1 : A, C, D, E Cluster 2 : B



### **Best Practices in Action**



Flexible Databricks Runtimes

Photon

Execution

# Data Skew Example

| <ul> <li>Scheduler Delay</li> <li>Task Deserialization Time</li> <li>Shuffle Read Time</li> </ul> | <ul> <li>Executor Computing Time</li> <li>Shuffle Write Time</li> <li>Result Serialization Time</li> </ul> | Getting Result Time |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|
| 91 / 10.154.65.122                                                                                |                                                                                                            |                     |
| 49 / 10.154.66.146                                                                                |                                                                                                            |                     |
| 39 / 10.154.66.142                                                                                |                                                                                                            |                     |
| 23 / 10.154.65.221                                                                                |                                                                                                            |                     |
| 111 / 10.154.64.59                                                                                |                                                                                                            |                     |
| 8 / 10.154.66.232                                                                                 |                                                                                                            |                     |
| 89 / 10.154.66.237                                                                                |                                                                                                            |                     |
| 54 / 10.154.65.177                                                                                |                                                                                                            |                     |
| 3 / 10.154.65.179                                                                                 |                                                                                                            |                     |
| 56 / 10.154.66.218                                                                                |                                                                                                            |                     |
| 72 / 10.154.65.182                                                                                |                                                                                                            |                     |
| 97 / 10.154.65.225                                                                                | -                                                                                                          |                     |
| 7 / 10.154.65.1                                                                                   |                                                                                                            |                     |
| 94 / 10.154.65.107                                                                                |                                                                                                            |                     |





#### The next-generation engine for the lakehouse







SAT&T



#### 1. Stick with Dataframes and it's supported features

#### 2. Consider your Storage Account.

### 3. Data quality impacts parallel processing.

© 2024 AT&T Intellectual Property - AT&T Proprietary (Internal Use Only)

### **Databricks Workflows**







### Databricks Workflows



### **Databricks Workflows**

**Task Dependencies** 

When a task is *Done*, it can be in a Success, Failure, or Excluded state.

All Succeeded Default behaviour

At Least 1 Succeeded e.g. Fan in with at least some success

None Failed e.g. Run task(s) at the end of DAG if nothing fails

#### All Done

e.g. Perform clean up even if tasks have failed or excluded

All Least 1 Failed

e.g. Perform clean-up with observability or specific actions

#### All Failed

e.g. Perform clean-up with observability or specific actions



>

#### **Parameterisation**

#### **Job Parameters**



Passed into each Task with behaviour based on the type e.g. additional options for JARs, spark-submit, Python Args

#### Job Contexts



Special set of templated variables that provide introspective metadata about job and task e.g. run\_id, job\_id, start\_time

#### **Task Values**

Custom parameters that can be shared between Tasks in a Job e.g. anything that can be programmatically set or retrieved!

#### Webhooks

Allows customers to build event-driven integrations with Databricks.

Supported destinations are Slack and Webhooks, with the below notification events:

For example, you can send a message to a Slack #channel when:



On start: Send a message to a when a job or a parent run is started



On success: when a job or a parent run finished without any errors



On failure: when a job fails or a parent run is terminated with one of the children in a failed state.



# THANK YOU